

Gas Sensing Elements

Proudly 100% Developed and Manufactured in Italy

NP-185MM

Matched Pair Catalytic Bead (Pellistor) Gas Sensor

D53388 rev.2 dated 25/01/2022

Key Features

The N.E.T. NP-18SMM is a catalytic (pellistor) type flammable gas sensor supplied as a matched pair of elements mounted on TO4 size headers and protected by a metal can. The matched pair sensor is mounted in a PVC housing of standard diameter of 32 mm (see figure).

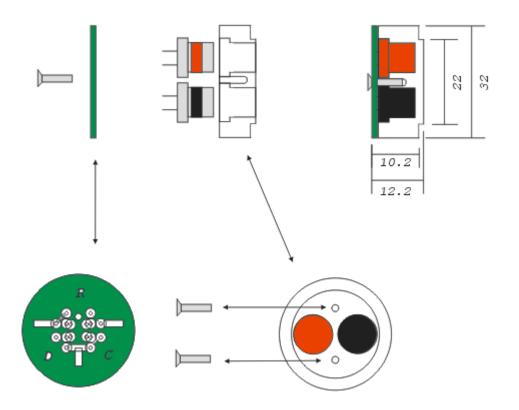
The sensor detects and measures the presence of flammable gases and vapours in air, in the range 0-100% of the Lower Explosive Limit (LEL) of the gas or vapour being measured. Designed as a sensing platform for use in fixed flammable gas detection systems, the NP-18SMM exhibits excellent long term zero and sensitivity stability and a high level of resistance to catalytic poisons. The device is compatible with a wide range of commercially available Gas Detection Systems and remote flammable gas detection heads.

The highly automated manufacturing procedure employed results in a repeatable reliable sensor which, unlike similar devices, requires no trimming resistor to enable the detector to be matched with a compensator.

NET Catalytic Bead Pellistors

Our Pellistor, or catalytic bead sensor, line is selected by Heads. This will allow the beads to be exposed to the target N.E.T. and manufactured, on OEM basis, by world's best gas without the risk of ignition. manufacturers.

Lower Explosive Limit (LEL). A Pellistor operates on the principle that when a combustible gas/air mixture is in contact with the catalyst surface, maintained at about 500°C as current is passed through it in a Platinum coil, combustion tion, Pellistors cannot be used in inert atmosoccurs. The heat generated increases the temperature of the bead, which in turn changes the resistance of the coil. The resistive signal change produced is proportional to the gas concentration and can be measured by using the coil as phosphates and organic silicones. In case any of those two a temperature thermometer in a standard Wheatstone risks are present, try our InfraRed sensors. bridge circuit.


tures, is typically necessary to encapsulate the beads in a of commercially available Gas Detection Systems and recertified flameproof enclosure, such as N.E.T. Certified mote flammable gas detector heads.

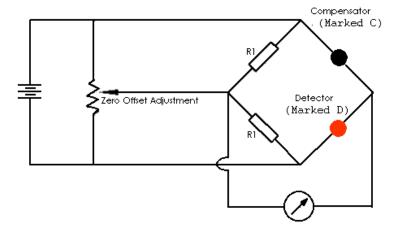
Pellistors are an inexpensive and effective solution to The sensor monitors the presence of a combustible gas or monitor Methane (CH4) and other Hydrocarbons and, genvapor in air (or atmospheres containing oxygen) up to the erally, combustible gases such as Hydrogen (H2) and Ammonia (NH3). They offer very low humidity and temperature dependence.

> As their measurement principle is based on combuspheres and require the presence of Oxygen. Additionally, they are susceptible to inhibition and poisoning by chemicals such as Lead- and Sulphur-containing compounds,

The standard dimensions and the electrical output Given Pellistors capacity to ignite flammable gas mix- make our Pellistor perfectly compatible with a wide range

Mechanical specifications

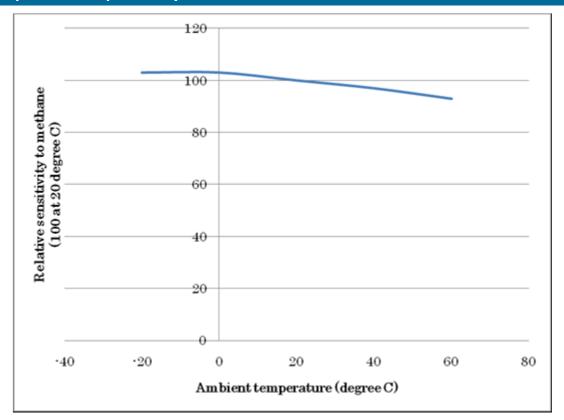
R—Reference D—Detector C—Compensator


All measurements are in mm

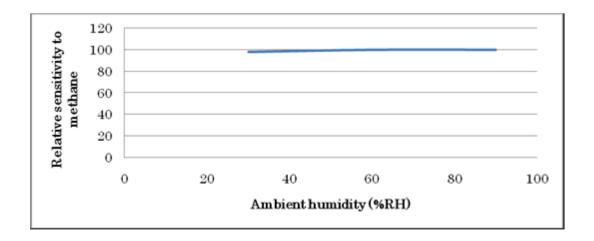
Product specifications

Technical Specifications	Recommended Voltage:	2.5 V ±0.1 V
	Current Drawn:	180 ±20mA
	Zero Offset:	0mV ±25mV
	Minimum Sensitivity:	20 mV/% CH4/Air
	Range:	0-100% LEL
	Linearity:	Effectively Linear to 100% LEL
	Accuracy:	± 1%LEL(CH ₄)
	Maximum Long Term Drift (Span):	< ±1% LEL/ Month
	Maximum Long Term Drift (Zero):	<±0.5 mV/Month
	Response Time:	T50: 3 sec T90: 8 sec
Operating conditions	Operating Temperature:	-20C to + 60°C
	Temperature Drift (Zero): (-20°C to +70°C)	< +/- 2% LEL
	Operating Humidity:	0-95% RH, non-condensing
	Humidity Response:	+/- 2% LEL

Recommended circuit


Note: The value R1 is arbitrary, since the function of R1 is to balance the bridge. 1 $k\Omega$ is suggested.

Gas Sensitivity/Linearity



Temperature dependancy

Humidity dependancy

Relative response to various gases

Below is a table of NP-17SHM responses to various flammable gases. The table assumes the sensor is measuring on the 0-100% LEL scale and assumes that the response to methane = 100%.

Note that the LEL data can be different in different countries. In Europe, the LEL's used are defined in the IEC standard IEC80079-20-1, whilst in the USA and various other areas, LELs are generally taken from the US Bureau of Mines Bulletin Document 627.

Technically, both are correct; the reason for the differences being that the measurements made for IEC80079-20-1 are with the gas in motion, whilst the US Bureau of Mines Bulletin Document 627 assumes the gas is not moving. For convenience, relative responses are given according to BOTH standards below.

Gas	Formula	LEL (Europe) (IEC80079-20-1)	Relative Response (%)	LEL (USA) (USBoM 627)	Relative Response (%)
Methane	CH4	4.4	100	5	100
Acetic acid	СНЗСООН	4	6	5.4	7
Acetone	(CH3)2CO	2.5	28	2.6	26
Cyclo-hexane	C6H12	1	48	1.3	55
Cyclo-pentane	C5H10	1.4	68	1.5	64
Ethanol	C2H5OH	3.1	25	3.3	24
Ethyl acetate	C2H5COOH	2	22	2.2	21
Ethylene	C2H4	2.3	53	2.7	55
Hydrogen	H2	4	102	4	90
Iso-butane	C4H10	1.3	45	1.8	55
Iso-propanol	СН3-С2Н4СООН	2	23	2.2	22
Methanol	СНЗОН	6	56	6.7	55
N-butane	C4H10	1.4	44	1.8	50
N-heptane	C7H16	0.85	44	1.05	48
N-hexane	C6H14	1	47	1.2	50
N-pentane	C5H12	1.1	54	1.4	61
Propane	C3H8	1.7	55	2.1	60
Styrene	C6H5CH=CH2	1	21	1.1	20
Toluene	C6H5CH3	1	28	1.2	30
Ammonia	NH3	15	85	15	75
Propylene	CH3-CH=CH2	2	63	2.4	66
Carbon Monoxide	СО	10.9	35	12.5	35
Xylene	C6H4(CH3)2	1	31	1.1	30
n-Octane	CH3(CH2)6CH3	0.8	45	0.95	48

Warranty and warning

Use within specified conditions.

Sensor characteristics must be measured in clean air without noise gases.

Electrode pins must be correctly connected. Wrong connection does not allow correct functions.

Do not apply voltage directly to electrode pins.

Do not bend pins.

Do not solder to electrode pins directly. Use exclusive sockets.

Do not use contact grease on electrode pins.

Do not put excess strength on electrode pins.

If sensor housing is damaged or scratched, do not use sensor.

Do not blow organic solvents, paints, chemical agents, oils, or high concentration gases onto sensor.

Do not disassemble or change any parts.

If sensor is used under irregular atmosphere, contact us for assistance.

N.E.T. has a policy of continuous development and improvement of its products. As such the specification for the device outlined in the data sheet may be changed without notice. In case of modification of the product, N.E.T. disclaims all liability

No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of N.E.T. For permission requests or technical support please contact or write to the address below:

N.E.T. SRL
Via Legnano, 2 | 20010 | Cornaredo | Milano | Italy
T +39.02.9354.4190
E info@nenvitech.com

